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Introduc-on	
  

  C-based programs: some vulnerabilities exist 
which could allow code injection attacks 

  Code injection attacks allow an attacker to 
execute foreign code with the privileges of the 
vulnerable program 

  Major problem for programs written in C/C++/
Objective C 

  Focus will be on: 
▸  Illustration of code injection attacks 
▸  Countermeasures for these attacks 
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Lecture	
  overview	
  

  Memory management in C-based languages 
  Vulnerabilities 
  Countermeasures 
  Conclusion 
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Memory	
  management	
  in	
  C-­‐based	
  
lanaguages	
  

  Memory is allocated in multiple ways in C-based 
languages: 
▸  Automatic (local variables in a function) 
▸  Static (global variables) 
▸  Dynamic (malloc, new or alloc) 

  Programmer is responsible for 
▸  Correct allocation and deallocation in the case of 

dynamic memory 
▸  Appropriate use of the allocated memory 

●  Bounds checks, type checks 
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Memory	
  management	
  in	
  C-­‐based	
  
languages	
  

  Memory management is very error prone 
  Typical bugs: 
▸  Writing past the bounds of the allocated memory 
▸  Dangling pointers: pointers to deallocated memory 
▸  Double frees: deallocating memory twice 
▸  Memory leaks: never deallocating memory 

  For efficiency reasons, C-like compilers don’t 
detect these bugs at run-time: 
▸  C standard states behavior of such programs is 

undefined 
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Process	
  memory	
  layout	
  
Arguments/Environment 

Stack 

Unused and  
Shared Memory 

Heap 

Static & Global Data 

Program code 
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Lecture	
  overview	
  

  Memory management in C-based languages 
  Vulnerabilities 
▸  Code injection attacks 
▸  Buffer overflows 
▸  Format string vulnerabilities 
▸  Integer errors 

  Countermeasures 
  Conclusion 
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Code	
  injec-on	
  a>acks	
  

  To exploit a vulnerability and execute a code 
injection attack, an attacker must: 
▸  Find a bug that can allow an attacker to overwrite 

interesting memory locations 
▸  Find such an interesting memory location 
▸  Copy target code in binary form into the memory of a 

program 
●  Can be done easily, by giving it as input to the program 

▸  Use the vulnerability to modify the location so that 
the program will execute the injected code 
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Interes-ng	
  memory	
  loca-ons	
  	
  
for	
  a>ackers	
  

  Stored code addresses: modified -> code can be 
executed when the program loads them into the 
IP 
▸  Return address: address where the execution must 

resume when a function ends 
▸  Global Offset Table: addresses here are used to 

execute dynamically loaded functions 
▸  Virtual function table: addresses are used to know 

which method to execute (dynamic binding in C++) 
▸  Dtors functions: called when programs exit 
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Interes-ng	
  memory	
  loca-ons	
  

  Function pointers: modified -> when called, the 
injected code is executed 

  Data pointers: modified -> indirect pointer 
overwrites 
▸  First the pointer is made to point to an interesting 

location, when it is dereferenced for writing the 
location is overwritten 

  Attackers can overwrite many locations to 
perform an attack  
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Lecture	
  overview	
  

  Memory management in C/C++ 
  Vulnerabilities 
▸  Code injection attacks 
▸  Buffer overflows 

●  Stack-based buffer overflows 
●  Indirect Pointer Overwriting 
●  Heap-based buffer overflows and double free 
●  Overflows in other segments 

▸  Format string vulnerabilities 
▸  Integer errors 

  Countermeasures 
  Conclusion 
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Buffer	
  overflows:	
  impact	
  
  Code red worm: estimated loss world-wide: $ 

2.62 billion1 
  Sasser worm: shut down X-ray machines at a 

Swedish hospital and caused Delta airlines to 
cancel several transatlantic flights2 

  Zotob worm: crashed the DHS’ US-VISIT 
workstations, causing long lines at major 
international airports3 

  Stuxnet: targeted Iran’s nuclear program and is 
believed to have caused it delays/damage4 

  All four worms used stack-based buffer 
overflows 

  1MS01-033, 2MS04-011,3 MS05-039, 4 MS08-67 
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Buffer	
  overflows:	
  numbers	
  

  NIST national vulnerability database: 
▸  7809 buffer overflows reported over 25 years 

(1988-2012): 14% of all vulnerabilities reported 
●  Most reported vulnerability (XSS, 2nd place with 7006) 

▸  23% (5528) of vulnerabilities with high severity 
(CVSS>=7) 
▸  35% (1391) of vulnerabilities with critical severity 

(CVSS=10) 
▸  Most important vulnerability in 2011, 2nd most 

important in 2012 (behind access control issues) 
▸  In the top 3 every year, except 2005 
▸  More stats at my OWASP talk tonight 
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Buffer	
  overflows:	
  what?	
  

  Write beyond the bounds of an array 
  Overwrite information stored behind the array 
  Arrays can be accessed through an index or 

through a pointer to the array 
  Both can cause an overflow 
  Java: not vulnerable because it has no pointer 

arithmetic and does bounds checking on array 
indexing 
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Buffer	
  overflows:	
  how?	
  

  How do buffer overflows occur? 
▸  By using an unsafe copying function (e.g. strcpy) 
▸  By looping over an array using an index which may 

be too high 
▸  Through integer errors 

  How can they be prevented? 
▸  Using copy functions which allow the programmer to 

specify the maximum size to copy (e.g. strncpy) 
▸  Checking index values 
▸  Better checks on integers 
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Buffer	
  overflows:	
  example	
  

void function(char *input) {!
!char str[80];!
!strcpy(str, input);!

}!

int main(int argc, char **argv) {!
!function(argv[1]);!

}!
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Shellcode	
  

  Small program in machine code representation 
  Injected into the address space of the process 
   int main() {!
  ! ! printf("You win\n");!
  ! ! exit(0);!
  ! }!
  ! static char shellcode[] =!
  ! ! ! "\x6a
\x09\x83\x04\x24\x01\x68\x77" !

  ! ! ! "\x69\x6e\x21\x68\x79\x6f
\x75\x20"!

  ! ! ! "\x31\xdb
\xb3\x01\x89\xe1\x31\xd2"!

  ! ! ! "\xb2\x09\x31\xc0\xb0\x04\xcd
\x80"!

  ! ! ! "\x32\xdb\xb0\x01\xcd\x80"; !
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Lecture	
  overview	
  
  Memory management in C/C++ 
  Vulnerabilities 
▸  Code injection attacks 
▸  Buffer overflows 

●  Stack-based buffer overflows 
●  Indirect Pointer Overwriting 
●  Heap-based buffer overflows and double free 
●  Overflows in other segments 

▸  Format string vulnerabilities 
▸  Integer errors 

  Countermeasures 
  Conclusion 
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Stack-­‐based	
  buffer	
  overflows	
  

  Stack is used at run time to manage the use of 
functions: 
▸  For every function call, a new record is created 

●  Contains return address: where execution should resume 
when the function is done 

●  Arguments passed to the function 
●  Local variables 

  If an attacker can overflow a local variable he 
can find interesting locations nearby 
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Stack-­‐based	
  buffer	
  overflows	
  

  Old unix login vulnerability 
▸  int login() { !

!char user[8], hash[8], pw[8]; !
!printf("login:"); !
!gets(user); !

!lookup(user,hash);!

!printf("password:"); !
!gets(pw); !

!if (equal(hash, hashpw(pw))) return OK; !
!else return INVALID; !

    } !
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Stack-­‐based	
  buffer	
  overflows	
  

login: 
  char user[8], hash[8], pw[8]; 
  printf(“username:”); 
  gets(user); 
  lookup(user,hash); 
  printf(“password:”); 
  gets(pw); 
  if (equal(hash,hashpw(pw))) 
    return OK; 
  else 
    return INVALID; 

IP 
Other stack frames 

Return address login 
Saved frame pointer login 

hash 

pw 

user 

FP 

SP 
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Stack-­‐based	
  buffer	
  overflows	
  
login: 
  char user[8], hash[8], pw[8]; 
  printf(“username:”); 
  gets(user); 
  lookup(user,hash); 
  printf(“password:”); 
  gets(pw); 
  if (equal(hash,hashpw(pw))) 
    return OK; 
  else 
    return INVALID; 

IP 

Other stack frames 

Return address login 
Saved frame pointer login 

hash 

pw 

user 

FP 

SP 
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Stack-­‐based	
  buffer	
  overflows	
  
login: 
  char user[8], hash[8], pw[8]; 
  printf(“username:”); 
  gets(user); 
  lookup(user,hash); 
  printf(“password:”); 
  gets(pw); 
  if (equal(hash,hashpw(pw))) 
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  else 
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IP 

Other stack frames 

Return address login 
Saved frame pointer login 

hash 

pw 

user 

FP 

SP 
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Stack-­‐based	
  buffer	
  overflows	
  
login: 
  char user[8], hash[8], pw[8]; 
  printf(“username:”); 
  gets(user); 
  lookup(user,hash); 
  printf(“password:”); 
  gets(pw); 
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  else 
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IP 

Other stack frames 

Return address login 
Saved frame pointer login 

hash 

pw 

user 

FP 

SP 
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Stack-­‐based	
  buffer	
  overflows	
  
login: 
  char user[8], hash[8], pw[8]; 
  printf(“username:”); 
  gets(user); 
  lookup(user,hash); 
  printf(“password:”); 
  gets(pw); 
  if (equal(hash,hashpw(pw))) 
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  else 
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IP 

Other stack frames 

Return address login 
Saved frame pointer login 

hash 

pw 

user 

FP 

SP 
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Stack-­‐based	
  buffer	
  overflows	
  

  Attacker can specify a password longer than 
8 characters 

  Will overwrite the hashed password 
  Attacker enters: 
▸  AAAAAAAABBBBBBBB 
▸  Where BBBBBBBB = hashpw(AAAAAAAA) 

  Login to any user account without knowing 
the password 

  Called a non-control data attack 
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Stack-­‐based	
  buffer	
  overflows	
  
login: 
  char user[8], hash[8], pw[8]; 
  printf(“username:”); 
  gets(user); 
  lookup(user,hash); 
  printf(“password:”); 
  gets(pw); 
  if (equal(hash,hashpw(pw))) 
    return OK; 
  else 
    return INVALID; 

IP 

Other stack frames 

Return address login 
Saved frame pointer login 

hash 

pw 

user 

FP 

SP 
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Stack-­‐based	
  buffer	
  overflows	
  

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 

Arguments f1 SP 

FP IP 
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Stack-­‐based	
  buffer	
  overflows	
  

Overwritten return address 

Injected code 

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 

Arguments f1 

Return address f1 
Saved frame pointer f1 

Buffer 
SP 

FP 

IP 
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Stack-­‐based	
  buffer	
  overflows	
  

Overwritten return address 

Injected code 

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 

Arguments f1 

SP 

FP 
IP 
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Stack-­‐based	
  buffer	
  overflows	
  

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Injected code 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 
SP 

IP 
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Stack-­‐based	
  buffer	
  overflows	
  

  Exercises 
▸  From Gera’s insecure programming page 

●  http://community.corest.com/~gera/
InsecureProgramming/"

▸  For the following programs: 
●  Assume Linux on Intel 32-bit  
●  Draw the stack layout right after  gets() has executed 
●  Give the input which will make the program print out “you 

win!” 
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Stack-­‐based	
  buffer	
  overflows	
  

  int main() {!
!int cookie;!

!char buf[80];!

!printf("b: %x c: %x\n", &buf, &cookie);!

!gets(buf);!

!if (cookie == 0x41424344)!

! !printf("you win!\n");!

}!
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Stack-­‐based	
  buffer	
  overflows	
  

Return address main: 

buf[80] 

gets() 
printf() 

Stack 

SP 

FP 

IP 

cookie 

... 

Frame pointer 
cookie 

buf 
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Stack-­‐based	
  buffer	
  overflows	
  

Return address main: 

buf[80] 

gets() 
printf() 

Stack 

SP 

FP 

IP 

cookie 

... 

Frame pointer 
ABCD 

buf 

 perl -e 'print "A"x80; print "DCBA"' | ./s1 
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Stack-­‐based	
  buffer	
  overflows	
  
  int main() {!

!int cookie;!

!char buf[80];!

!printf("b: %x c: %x\n", &buf, &cookie);!

!gets(buf);!

}!

  buf is at location 0xbffffce4 in memory!
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Stack-­‐based	
  buffer	
  overflows	
  

Return address main: 

buf[80] 

gets() 
printf() 

Stack 

SP 

FP 

IP 

cookie 

... 

Frame pointer 
cookie 

buf 
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Stack-­‐based	
  buffer	
  overflows	
  

 #define RET 0xbffffce4!

 int main() {!
!char buf[93];!
!int ret;!
!memset(buf, '\x90', 92);!
!memcpy(buf, shellcode, strlen(shellcode));!
!*(long *)&buf[88] = RET;!
!buf[92] = 0;!
!printf(buf);!

 }!
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Stack-­‐based	
  buffer	
  overflows	
  

0xbffffce4 
main: 

buf[80] 

gets() 
printf() 

Stack 

0xbffffce4 

FP 

IP 

cookie 

... 

0x90909090 
0x90909090 

Injected code 
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▸  Code injection attacks 
▸  Buffer overflows 
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●  Indirect Pointer Overwriting 
●  Heap-based buffer overflows and double free 
●  Overflows in other segments 

▸  Format string vulnerabilities 
▸  Integer errors 

  Countermeasures 
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Indirect	
  Pointer	
  Overwri-ng	
  

  Overwrite a target memory location by 
overwriting a data pointer 
▸  An attackers makes the data pointer point to the 

target location 
▸  When the pointer is dereferenced for writing, the 

target location is overwritten 
▸  If the attacker can specify the value of to write, he 

can overwrite arbitrary memory locations with 
arbitrary values 
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Indirect	
  Pointer	
  Overwri-ng	
  

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 
SP 

FP 
IP 

f1: 

buffer[] 
overflow(); 

... 

ptr = &data; 

*ptr = value; 

data 
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Indirect	
  Pointer	
  Overwri-ng	
  

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 

SP 

FP 

IP 
f1: 

buffer[] 
overflow(); 

... 

ptr = &data; 

*ptr = value; 

Arguments f1 

Return address f1 
Saved frame pointer f1 

Buffer 

Pointer 

data 
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Indirect	
  Pointer	
  Overwri-ng	
  

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 

SP 

FP 

IP 

f1: 
buffer[] 

overflow(); 

... 

ptr = &data; 

*ptr = value; 

Arguments f1 

Return address f1 
Saved frame pointer f1 

Overwritten pointer 

data 
Injected code 

f1: 
buffer[] 

overflow() 
... 

f1: 

buffer[] 
overflow(); 

... 

ptr = &data; 

*ptr = value; 
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Indirect	
  Pointer	
  Overwri-ng	
  

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 

SP 

FP 

IP 

f1: 
buffer[] 

overflow(); 

... 

ptr = &data; 

*ptr = value; 

Arguments f1 

Modified return address 
Saved frame pointer f1 

Overwritten pointer 

data 
Injected code 

f1: 
buffer[] 

overflow() 
... 

f1: 

buffer[] 
overflow(); 

... 

ptr = &data; 

*ptr = value; 



46 

Indirect	
  Pointer	
  Overwri-ng	
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... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 
SP 

FP 

IP 

f1: 
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overflow(); 

... 
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data 
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Indirect	
  Pointer	
  Overwri-ng	
  
static unsigned int a = 0;!

int main(int argc, char **argv) {!

       int *b = &a;!

       char buf[80];!

        printf("buf: %08x\n", &buf);!

        gets(buf);!

        *b = strtoul(argv[1], 0, 16);!

}!

 buf is at 0xbffff9e4!
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Indirect	
  Pointer	
  Overwri-ng	
  

f1: 
buffer[] 

overflow() 
... 

Stack 

SP 

FP 

IP 

main: 

buf[80] 
gets(); 

... 

b = &a; 

*b = argv[1]; 
Return address 

Saved frame pointer 

buf 

b 

a 
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Indirect	
  Pointer	
  Overwri-ng	
  
#define RET 0xbffff9e4+88!

int main() {!

  char buf[84];!

  int ret;!

  memset(buf, '\x90', 84);!

  memcpy(buf, shellcode, strlen
(shellcode));!

  *(long *)&buffer[80] = RET;!

  printf(buffer);!

}!

./exploit | ./s3 bffff9e4!



50 

Indirect	
  Pointer	
  Overwri-ng	
  
f1: 

buffer[] 
overflow() 

... 
Stack 

SP 

FP IP 

main: 

buf[80] 
gets(); 

... 

b = &a; 

*b = argv[1]; 
Return address 

Saved frame pointer 

buf 

b 
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Indirect	
  Pointer	
  Overwri-ng	
  
f1: 

buffer[] 
overflow() 

... 
Stack 

SP 

FP 
IP 

main: 

buf[80] 
gets(); 

... 

b = &a; 

*b = argv[1]; 
Return address 

Saved frame pointer 

buf 

b 
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Heap-­‐based	
  buffer	
  overflows	
  

  Heap contains dynamically allocated memory 
▸  Managed via malloc() and free() functions of the 

memory allocation library 
▸  A part of heap memory that has been processed by 

malloc is called a chunk 
▸  No return addresses: attackers must overwrite data 

pointers or function pointers 
▸  Most memory allocators save their memory 

management information in-band 
▸  Overflows can overwrite management information 
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Heap	
  management	
  in	
  dlmalloc	
  

  Used chunk 

Size of prev. chunk 
Size of chunk1 

Chunk1 

User data 
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Heap	
  management	
  in	
  dlmalloc	
  

  Free chunk: doubly linked list of free chunks 

Size of prev. chunk 
Size of chunk1 

Chunk1 

Old user data 

Forward pointer 
Backward pointer 
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Heap	
  management	
  in	
  dlmalloc	
  

  Removing a chunk from the doubly linked list of 
free chunks: 

  This is: 

#define unlink(P, BK, FD) {!
BK = P->bk;!
FD = P->fd;!
FD->bk = BK;!
BK->fd = FD; }!

P->fd->bk = P->bk!
P->bk->fd = P->fd!
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Heap	
  management	
  in	
  dlmalloc	
  

Size of prev. chunk 
Size of chunk1 

Chunk1 

Old user data 

Forward pointer 
Backward pointer 

Size of prev. chunk 
Size of chunk2 

Chunk2 

Old user data 

Forward pointer 
Backward pointer 

Size of prev. chunk 
Size of chunk3 

Chunk3 

Old user data 

Forward pointer 
Backward pointer 
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Heap	
  management	
  in	
  dlmalloc	
  

Size of prev. chunk 
Size of chunk1 

Chunk1 

Old user data 

Forward pointer 
Backward pointer 

Size of prev. chunk 
Size of chunk2 

Chunk2 

Old user data 

Forward pointer 
Backward pointer 

Size of prev. chunk 
Size of chunk3 

Chunk3 

Old user data 

Forward pointer 
Backward pointer 
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Heap	
  management	
  in	
  dlmalloc	
  

Size of prev. chunk 
Size of chunk1 

Chunk1 

Old user data 

Forward pointer 
Backward pointer 

Size of prev. chunk 
Size of chunk2 

Chunk2 

Old user data 

Forward pointer 
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Heap	
  management	
  in	
  dlmalloc	
  

Size of prev. chunk 
Size of chunk1 

Chunk1 

Old user data 

Forward pointer 
Backward pointer 
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Chunk2 

Old user data 

Forward pointer 
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Forward pointer 
Backward pointer 



61 

Heap-­‐based	
  buffer	
  overflows	
  

Size of prev. chunk 
Size of chunk1 

Chunk1 

User data 

Size of chunk1 
Size of chunk2 

Chunk2 

Old user data 

Forward pointer 
Backward pointer 
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Heap-­‐based	
  buffer	
  overflows	
  

Size of prev. chunk 
Size of chunk1 

Chunk1 

Injected code 

Size of chunk1 
Size of chunk2 

Chunk2 

Old user data 

fwd: pointer to target 
bck: pointer to inj. code 

Return address 

call f1 
... 
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Heap-­‐based	
  buffer	
  overflows	
  

Size of prev. chunk 
Size of chunk1 

Chunk1 

Injected code 

Size of chunk1 
Size of chunk2 

Chunk2 

Old user data 

fwd: pointer to target 
bck: pointer to inj. code 

Overwritten return address 

 After unlink 

call f1 
... 
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Dangling	
  pointer	
  references	
  

  Pointers to memory that is no longer allocated 
  Dereferencing is unchecked in C 
  Generally leads to crashes 
  Can be used for code injection attacks when 

memory is deallocated twice (double free) 
  Double frees can be used to change the 

memory management information of a chunk 
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Double	
  free	
  

Size of prev. chunk 
Size of chunk2 

Chunk2 

Old user data 

Forward pointer 
Backward pointer 

Size of prev. chunk 
Size of chunk3 

Chunk3 

Old user data 

Forward pointer 
Backward pointer 
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Double	
  free	
  

Size of prev. chunk 
Size of chunk2 

Chunk2 

Old user data 

Forward pointer 
Backward pointer 

Size of prev. chunk 
Size of chunk3 

Chunk3 

Old user data 

Forward pointer 
Backward pointer 
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Double	
  free	
  

Size of prev. chunk 
Size of chunk2 

Chunk2 

Old user data 

Forward pointer 
Backward pointer 

Size of prev. chunk 
Size of chunk2 

Chunk2 

Old user data 

Forward pointer 
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Size of prev. chunk 
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Chunk3 
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Forward pointer 
Backward pointer 
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Double	
  free	
  

Size of prev. chunk 
Size of chunk2 

Chunk2 

Old user data 

Forward pointer 
Backward pointer 

Size of prev. chunk 
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Chunk3 

Old user data 

Forward pointer 
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Double	
  free	
  

  Unlink: chunk stays linked because it points 
to itself 

Size of prev. chunk 
Size of chunk2 

Chunk2 

Old user data 

Forward pointer 
Backward pointer 
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Double	
  free	
  

  If unlinked to reallocate: attackers can now 
write to the user data part  

Size of prev. chunk 
Size of chunk2 

Chunk2 

Old user data 

Forward pointer 
Backward pointer 
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Double	
  free	
  

  It is still linked in the list too, so it can be 
unlinked again 

Size of prev. chunk 
Size of chunk2 

Chunk2 

Injected code 

Forward pointer 
Backward pointer 

Return address 

call f1 
... 
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Double	
  free	
  

  After second unlink 

Size of prev. chunk 
Size of chunk2 

Chunk2 

Injected code 

Forward pointer 
Backward pointer 

Overwritten return address 

call f1 
... 
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Lecture	
  overview	
  
  Memory management in C-based languages 
  Vulnerabilities 
▸  Code injection attacks 
▸  Buffer overflows 

●  Stack-based buffer overflows 
●  Indirect Pointer Overwriting 
●  Heap-based buffer overflows and double free 
●  Overflows in other segments 

▸  Format string vulnerabilities 
▸  Integer errors 

  Countermeasures 
  Conclusion 
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Overflows	
  in	
  the	
  data/bss	
  
segments	
  

  Data segment contains global or static compile-
time initialized data 

  Bss contains global or static uninitialized data 
  Overflows in these segments can overwrite: 
▸  Function and data pointers stored in the same  

segment 
▸  Data in other segments 
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Overflows	
  in	
  the	
  data/bss	
  
segments	
  

  ctors: pointers to functions 
to execute at program start 

  dtors: pointers to functions 
to execute at program 
finish 

  GOT: global offset table: 
used for dynamic linking: 
pointers to absolute 
addresses  

Data  

Ctors 

Dtors 

GOT 

BSS 

Heap 
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Overflow	
  in	
  the	
  data	
  segment	
  

 char buf[256]={1};!

 int main(int argc,char **argv) {!
  !strcpy(buf,argv[1]);!
 }!
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Overflow	
  in	
  the	
  data	
  segment	
  

Data  

Ctors 

0x00000000 Dtors 

GOT 

BSS 

buf[256]  
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Overflow	
  in	
  the	
  data	
  sec-on	
  

  int main (int argc, char **argv) {!
    !char buffer[476];!

!char *execargv[3] = { "./abo7", buffer, 
NULL };!
    !char *env[2] = { shellcode, NULL };!

!int ret;!
!ret = 0xBFFFFFFF - 4 - strlen (execargv[0]) 

- 1 !
!- strlen (shellcode);!
!memset(buffer, '\x90', 476);!
!*(long *)&buffer[472] = ret;!
!execve(execargv[0],execargv,env);!

    }!
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Overflow	
  in	
  the	
  data	
  segment	
  

Data  

Ctors 

RET Dtors 

GOT 

BSS 

buf[256]  
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  Vulnerabilities 
▸  Code injection attacks 
▸  Buffer overflows 
▸  Format string vulnerabilities 
▸  Integer errors 

  Countermeasures 
  Conclusion 
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Format	
  string	
  vulnerabili-es	
  

  Format strings are used to specify formatting 
of output:  
▸  printf(“%d is %s\n”, integer, 
string); -> “5 is five”!

  Variable number of arguments 
  Expects arguments on the stack 
  Problem when attack controls the format 

string: 
▸  printf(input);!
▸  should be printf(“%s”, input);!
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Format	
  string	
  vulnerabili-es	
  

  Can be used to read 
arbitrary values 
from the stack 
▸  “%s %x %x”!
▸  Will read 1 string 

and 2 integers from 
the stack 

Stack 

Other stack frames 

Arguments printf:  
format string 

Return address printf 

SP 

FP 
Saved frame ptr printf 

Return address f0 
Saved frame pointer f0 

Local variable f0 
string 
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Format	
  string	
  vulnerabili-es	
  

  Can be used to read 
arbitrary values 
from the stack 
▸  “%s %x %x”!
▸  Will read 1 string 

and 2 integers from 
the stack 

Stack 

Other stack frames 

Arguments printf:  
format string 

Return address printf 

SP 

FP 
Saved frame ptr printf 

Return address f0 
Saved frame pointer f0 

Local variable f0 
string 
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Format	
  string	
  vulnerabili-es	
  

  Format strings can also write data: 
▸  %n will write the amount of (normally) printed 

characters to a pointer to an integer 
▸  “%200x%n” will write 200 to an integer 

  Using %n, an attacker can overwrite arbitrary 
memory locations: 
▸  The pointer to the target location can be placed 

some where on the stack 
▸  Pop locations with “%x” until the location is reached 
▸  Write to the  location with “%n” 
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  overview	
  

  Memory management in C/C++ 
  Vulnerabilities 
▸  Code injection attacks 
▸  Buffer overflows 
▸  Format string vulnerabilities 
▸  Integer errors 

●  Integer overflows 
●  Integer signedness errors 

  Countermeasures 
  Conclusion 
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Integer	
  overflows	
  
  For an unsigned 32-bit integer, 2^32-1 is the 

largest value it can contain 
  Adding 1 to this, will wrap around to 0. 
  Can cause buffer overflows 

  malloc(0) - result is implementation defined: either 
NULL is returned or malloc will allocate the 
smallest possible chunk: in Linux: 8 bytes 

int main(int argc, char **argv){!
unsigned int a;!
char *buf;!
a = atol(argv[1]);!
buf = (char*) malloc(a+1); !
}!
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  overview	
  

  Memory management in C/C++ 
  Vulnerabilities 
▸  Code injection attacks 
▸  Buffer overflows 
▸  Format string vulnerabilities 
▸  Integer errors 

●  Integer overflows 
●  Integer signedness errors 

  Countermeasures 
  Conclusion 
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Integer	
  signedness	
  errors	
  

  Value interpreted as both signed and unsigned 

  For a negative a: 
▸  In the condition, a is smaller than 100 
▸  Strncpy expects an unsigned integer: a is now a 

large positive number 

int main(int argc, char **argv) { 
int a; 
char buf[100]; 
a = atol(argv[1]); 
if (a < 100) 

strncpy(buf, argv[2], a); } 
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Lecture	
  overview	
  
  Memory management in C-based languages 

Vulnerabilities 
  Countermeasures 
▸  Probabilistic countermeasures 
▸  Separation and replication 

countermeasures 
▸  Paging-based countermeasures 
▸  Bounds checkers 
▸  Verification countermeasures 

  Conclusion 
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Countermeasures	
  

  Looks at the source of a countermeasure or 
mitigation  

  Mostly academic sources, we will see how/if they 
are applied in modern operating systems and 
compilers 

  We will discuss shortcomings with the general 
approaches of these countermeasures (and 
sometimes of specific OS implementations) 
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▸  Verification countermeasures 

  Conclusion 
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Probabilis-c	
  countermeasures	
  

  Based on randomness 
  Canary-based approach 
▸  Place random number in memory 
▸  Check random number before performing action 
▸  If random number changed an overflow has 

occurred 

  Obfuscation of memory addresses 
  Address Space Layout Randomization 
  Instruction Set Randomization 
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Canary-­‐based	
  countermeasures	
  

  StackGuard (SG): Cowan et al. 
▸  Places random number before the return address 

when entering function 
▸  Verifies that the random number is unchanged when 

returning from the function 
▸  If changed, an overflow has occurred, terminate 

program 
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StackGuard	
  (SG)	
  

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 

SP 

FP 

IP 
f1: 

buffer[] 
overflow(); 

... 

ptr = &data; 

*ptr = value; 

Arguments f1 

Return address f1 
Saved frame pointer f1 

Buffer 

Pointer 

data 

Canary 

Canary 
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StackGuard	
  (SG)	
  

Return address f1 
Saved frame pointer f1 

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 

SP 

FP IP 

f1: 

buffer[] 
overflow(); 

... 

ptr = &data; 

*ptr = value; 

Arguments f1 

Injected code 

Pointer 

data 

Canary 

Canary 
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Canary-­‐based	
  countermeasures	
  

  Propolice (PP): Etoh & Yoda 
▸  Same principle as StackGuard 
▸  Protects against indirect pointer overwriting by 

reorganizing the stack frame: 
●  All arrays are stored before all other data on the stack (i.e. 

right next to the random value) 
●  Overflows will cause arrays to overwrite other arrays or the 

random value 

  Part of GCC >= 4.1 
  ‘Stack Cookies in Visual Studio 
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Propolice	
  (PP)	
  

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 

SP 

FP 

IP 
f1: 

buffer[] 
overflow(); 

... 

ptr = &data; 

*ptr = value; 

Arguments f1 

Return address f1 
Saved frame pointer f1 

Buffer 

Pointer 
data 

Canary 

Canary 
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Propolice	
  (PP)	
  

Return address f1 
Saved frame pointer f1 

Canary 

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 

SP 

FP 

IP 
f1: 

buffer[] 
overflow(); 

... 

ptr = &data; 

*ptr = value; 

Arguments f1 

Buffer 

Pointer 
data 

Canary 
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Stack	
  cookies	
  in	
  Visual	
  Studio	
  

  Invalid cookies would throw an exception 
  Attackers could overwrite the exception handler 

pointers on a thread’s stack 
  SafeSEH 
▸  Creates a table of exception handling pointers at link 

time 
▸  If a pointer is not in this table, exception is invalid 
▸  Must relink executable for it to work 

  SEHOP 
▸  Verifies integrity of the structured exception handler 

call chain 
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SEHOP	
  

  Exception handling chain is a structure with next 
pointers and a pointer to a handler 

  SEHOP adds a symbolic registration record at 
the end of the chain at runtime 

  Verifies chain before calling the exception, due 
to ASLR, an attacker can’t set a valid pointer to 
the symbolic record 

Next Handler 

Next Handler 

Function 

Function 

Next Handler Function 

Next Handler Shellcode 

Invalid 
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Heap	
  protector	
  (HP)	
  
Size of prev. chunk 

Size of chunk1 

Chunk1 

User data 

Size of chunk1 
Size of chunk2 

Chunk2 

Old user data 

Forward pointer 
Backward pointer 

Checksum 

Checksum 

 Heap protector: Robertson 
et al. 

 Adds checksum to the chunk 
information 

 Checksum is XORed with a 
global random value 

 On allocation checksum is 
added 

 On free (or other operations) 
checksum is calculated, 
XORed, and compared 
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Contrapolice	
  (CP)	
  

Size of prev. chunk 
Size of chunk1 

Chunk1 

User data 

Size of chunk1 
Size of chunk2 

Chunk2 

Old user data 

Forward pointer 
Backward pointer 

Canary1 

Canary1 
Canary2 

Canary2 

 Contrapolice: Krennmair 
 Stores a random value before 

and after the chunk 
 Before exiting from a string 

copy operation, the random 
value before is compared to the 
random value after 

 If they are not the same, an 
overflow has occured 
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Problems	
  with	
  canaries	
  

  Random value can leak 
  For SG: Indirect Pointer Overwriting 
  For PP: overflow from one array to the other 

(e.g. array of char overwrites array of pointer) 
  For HP, SG, PP: 1 global random value 
  CP: different random number per chunk 
  CP: no protection against overflow in loops 
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Probabilis-c	
  countermeasures	
  

  Obfuscation of memory addresses 
▸  Also based on random numbers 
▸  Numbers used to ‘encrypt’ memory locations 
▸  Usually XOR 

●  a XOR b = c 
●  c XOR b = a 
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Obfusca-on	
  of	
  memory	
  addresses	
  

  PointGuard: Cowan et al. 
▸  Protects all pointers by encrypting them (XOR) with 

a random value 
▸  Decryption key is stored in a register 
▸  Pointer is decrypted when loaded into a register 
▸  Pointer is encrypted when loaded into memory 
▸  Forces the compiler to do all memory access via 

registers 
▸  Can be bypassed if the key or a pointer leaks 
▸  Randomness can be lowered by using a partial 

overwrite 
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Par-al	
  overwrite	
  

XOR: 
0x41424344 XOR 0x20304050 = 0x61720314 
 However, XOR ‘encrypts’ bitwise 

0x44 XOR 0x50 = 0x14 
If injected code relatively close: 

1 byte: 256 possibilities 
2 bytes: 65536  possibilities 
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Par-al	
  overwrite	
  

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Other Local variables f0 

SP 

FP 

IP 
f1: 

buffer[] 
overflow(); 

... 

ptr = &data; 

*ptr = value; 

Arguments f1 

Return address f1 
Saved frame pointer f1 

Buffer 

 Encrypted pointer 

Data 
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Par-al	
  overwrite	
  

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Other Local variables f0 

SP 

FP IP 

f1: 

buffer[] 
overflow(); 

... 

ptr = &data; 

*ptr = value; 

Arguments f1 

Return address f1 
Saved frame pointer f1 

Injected code 

Data 

 Encrypted pointer 
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Par-al	
  overwrite	
  

Modified return address 

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Other Local variables f0 

SP 

FP IP 

f1: 

buffer[] 
overflow(); 

... 

ptr = &data; 

*ptr = value; 

Arguments f1 

Saved frame pointer f1 

Injected code 

Data 

 Encrypted pointer 
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Probabilis-c	
  countermeasures	
  

  Address space layout randomization: PaX team 
▸  Compiler must generate PIC 
▸  Randomizes the base addresses of the stack, heap, 

code and shared memory segments 
▸  Makes it harder for an attacker to know where in 

memory his code is located 
▸  Can be bypassed if attackers can print out memory 

addresses: possible to derive base address 

  Implemented in Windows Vista / Linux >= 2.6.12 
  Windows 8 allows “Force ASLR”, randomize 

DLLs that aren’t compiled with ASLR support 
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Heap-­‐spraying	
  

  Technique to bypass ASLR 
  If an attacker can control memory allocation in 

the program (e.g. in the browser via javascript) 
  Allocate a significant amount of memory 
▸  For example: 1GB or 2GB 
▸  Fill memory with a bunch of nops, place shell code at 

the end 
▸  Reduces amount of randomization offered by ASLR 
▸  Jumping anywhere in the nops will cause the 

shellcode to be executed eventually 
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Probabilis-c	
  countermeasures	
  

  Randomized instruction sets: Barrantes et al./Kc 
et al. 
▸  Encrypts instructions while they are in memory 
▸  Decrypts them when needed for execution 
▸  If attackers don’t know the key their code will be 

decrypted wrongly, causing invalid code execution 
▸  If attackers can guess the key, the protection can be 

bypassed 
▸  High performance overhead in prototypes: should be 

implemented in hardware 
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Virtual	
  Table	
  Guard	
  

  Adds a random value to the top of the vtable  
▸  Checks if the random value is unchanged before 

using the vtable 
▸  Enabled by adding an annotation to a C++ class 

●  IE10 does this for a number of key classes 
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Probabilis-c	
  countermeasures	
  

  Rely on keeping memory secret 
  Programs that have buffer overflows could also 

have information leakage 
  Example: 
▸  char buffer[100]; 
▸  strncpy(buffer, input, 100); 
▸  Printf(“%s”, buffer); 

  Strncpy does not NULL terminate (unlike strcpy), 
printf keeps reading until a NULL is found 
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Lecture	
  overview	
  
  Memory management in C/C++ 
  Vulnerabilities 
  Countermeasures 
▸  Probabilistic countermeasures 
▸  Separation and replication 

countermeasures 
▸  Paging-based countermeasures 
▸  Bounds checkers 
▸  Verification countermeasures 

  Conclusion 
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Separa-on	
  and	
  replica-on	
  of	
  
informa-on	
  

  Replicate valuable control-flow information 
▸  Copy control-flow information to other memory 
▸  Copy back or compare before using 

  Separate control-flow information from other 
data 
▸  Write control-flow information to other places in 

memory 
▸  Prevents overflows from overwriting control flow 

information 

  These approaches do not rely on randomness 



117 

Separa-on	
  of	
  informa-on	
  

  Dnmalloc: Younan et al. 
▸  Does not rely on random numbers 
▸  Protection is added by separating the chunk 

information from the chunk 
▸  Chunk information is stored in separate regions 

protected by guard pages 
▸  Chunk is linked to its information through a hash 

table 
▸  Fast: performance impact vs. dlmalloc: -10% to +5% 
▸  Used as the default allocator for Samhein (open 

source IDS) 
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Dnmalloc	
  

Control data Regular data 

Management information 

Low addresses 

High addresses 

Heap Data 

Heap Data 

Heap Data 

Heap Data 

Heap Data 

Heap Data 

Heap Data 

Heap Data 

Management information 
Management information 
Management information 

Chunkinfo region 
Guard page 

Ptr to chunkinfo 
Ptr to chunkinfo 
Ptr to chunkinfo 
Ptr to chunkinfo 

Guard page 
Hashtable 

Ptr to chunkinfo 

Management information 
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Separa-on	
  of	
  informa-on	
  

  Multistack: Younan et al. 
▸  Does not rely on random numbers 
▸  Separates the stack into multiple stacks, 2 criteria: 

●  Risk of data being an attack target (target value) 
●  Risk of data being used as an attack vector  (source value) 

–  Return addres: target: High; source: Low 
–  Arrays of characters: target: Low; source: High 

▸  Default: 5 stacks, separated by guard pages 
●  Stacks can be reduced by using selective bounds checking: 

to reduce source risk: ideally 2 stacks 
▸  Fast: max. performance overhead: 2-3% (usually 0) 
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Mul-stack	
  

  Stacks are at a fixed location from each other 
  If source risk can be reduced: maybe only 2 

stacks 
▸  Map stack 1,2 onto stack one 
▸  Map stack 3,4,5 onto stack two 

Array of 
characters 

Guard page 

Structures 
(with char. 

array) 

Array of 
structures 
(with char 

array) 

Guard page 

Structs (no 
char array) 

Array of struct 
(no char 
array) 
Arrays 
Alloca() 
Floats 

Guard page 

Array of 
pointers 

Structures (no 
arrays) 

Integers 
Guard page 

Pointers 

Saved 
registers 

Guard page 
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▸  Paging-based countermeasures 
▸  Bounds checkers 
▸  Verification countermeasures 
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Paging-­‐based	
  countermeasure 	
   	
  	
  
  Non-executable memory (called NX or XN) 
▸  Pages of memory can be marked executable, 

writeable and readable 
▸  Older Intel processors would not support the 

executable bit which meant that readable meant 
executable 

▸  Eventually the bit was implemented, allowing the OS 
to mark data pages (such as the stack and heap 
writable but not executable) 

▸  OpenBSD takes it further by implementing W^X 
(writable XOR executable) 

▸  Programs doing JIT have memory that is both 
executable and writable 
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Stack-­‐based	
  buffer	
  overflowed	
  on	
  NX	
  

Overwritten return address 

Injected code 

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 

Arguments f1 

SP 

FP 
IP 
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Stack-­‐based	
  buffer	
  overflow	
  on	
  NX	
  

Injected code 

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 
SP 

IP 

crash: memory 
not executable 
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Bypassing	
  non-­‐executable	
  memory	
  
  Early exploits would return to existing functions 

(called return-to-libc) to bypass these 
countermeasures 
▸  Places the arguments on the stack and then places 

the address of the function as the return addres 
●  This simulates a function call 

▸  For example calling system(“/bin/bash”) would place 
the address of the executable code for system as 
return address and would place a pointer to the 
string /bin/bash on the stack 
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Paging-­‐based	
  countermeasures	
  

Overwritten return address 

Injected code 

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

Local variables f0 

Arguments f1 

Return address f1 
Saved frame pointer f1 

Buffer 
SP 

FP 

IP 
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Paging-­‐based	
  countermeasures	
  

Overwritten return address 

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

string “/bin/bash” 

Pointer to /bin/bash 

SP 

FP 

IP 

system: 
... 

int 0x80 
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Return	
  oriented	
  programming	
  

  More generic return-to-libc 
  Returns to existing assembly code, but doesn’t 

require it to be the start of the function: 
▸  Any code snippet that has the desired functionality 

followed by a ret can be used 
●  For example: 

–  Code snippet that does pop eax, followed by ret 
–  Next code snippet does mov ecx, eax followed by ret 
–  Final code snippet does jmp ecx 
–  Code gets executed at the address in ecx 

  Shown to be Turing complete for complex 
libraries like libc 
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Return	
  oriented	
  programming	
  

Overwritten return address 

f0: 
... 

call f1 
... 

f1: 
buffer[] 

overflow() 
... 

Stack 

Other stack frames 

Return address f0 
Saved frame pointer f0 

return after pop 
To be popped in eax 

SP 

FP 

IP 

f2: 
... 

pop eax 
ret 

return after mov 

f3: 
... 

mov ecx, eax 
ret 

f4: 
... 

jmp ecx 
... 
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Return	
  oriented	
  programming	
  

  x86 has variable length instructions, ranging from 
1 to 17 bytes. 

  ROP doesn’t have to jump to the beginning of an 
instruction 

  The middle of an instruction could be interpreted 
as an instruction that has the desired 
functionality, followed by a ret (either as part of 
that instruction or the following instruction) 

  Also possible that jumping into a middle of an 
instruction causes subsequent instructions to be 
interpreted differently 
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Return	
  oriented	
  programming	
  

  x86 has variable length instructions, ranging from 
1 to 17 bytes. 

  ROP doesn’t have to jump to the beginning of an 
instruction 

  The middle of an instruction could be interpreted 
as an instruction that has the desired 
functionality, followed by a ret (either as part of 
that instruction or the following instruction) 

  Also possible that jumping into a middle of an 
instruction causes subsequent instructions to be 
interpreted differently 
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Return	
  oriented	
  programming	
  

  Example adapted from “Return-oriented Programming: Exploitation without Code Injection” by 
Buchanan et al. 

00 f7 add bh, dh 

c7 07 00 00 00 0f mov  edi, 0x0F000000 

95 xchg eax, ebp 

45 inc ebp 

c3 ret 

movl [ebp-44], 0x00000001 

test edi, 0x00000007 

setnzb [ebp-61] 

c7 45 d4 01 00 00 00 machine code: 

f7 c7 07 00 00 00 machine code: 

0f 95 45 c3 machine code: 
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JIT	
  Spraying	
  

  Heap-spraying has the drawback that it will not 
work with non-executable memory 

  JIT spraying uses the Just In Time compiler in 
browsers that transforms scripting code (JS, 
Flash, AS) to native code 
▸  By carefully crafting the script, the native code could 

be interpreted differently when interpretation starts at 
a different address 

  Filling memory with this code can result in native 
code that is marked executable that bypasses 
ASLR 
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Lecture	
  overview	
  
  Memory management in C/C++ 
  Vulnerabilities 
  Countermeasures 
▸  Probabilistic countermeasures 
▸  Separation and replication 

countermeasures 
▸  Paging-based countermeasures 
▸  Bounds checkers 
▸  Verification countermeasures 

  Conclusion 
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Bounds	
  checkers	
  

  Ensure arrays and pointers do not access 
memory out of bounds through runtime checks 

  Slow: 
▸  Bounds checking in C must check all pointer 

operations, not just array index accesses (as 
opposed to Java) 

▸  Usually too slow for production deployment 

  Some approaches have compatibility issues 
  Two major approaches: add bounds info to 

pointers, add bounds info to objects 
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Bounds	
  checkers	
  

  Add bounds info to pointers 
▸  Pointer contains 

●  Current value 
●  Upper bound 
●  Lower bound 

▸  Two techniques 
●  Change pointer representation: fat pointers 

–  Fat pointers are incompatible with existing code (casting) 
●  Store extra information somewhere else, look it up 

▸  Problems with existing code: if (global) pointer is 
changed, info is out of sync 
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Bounds	
  checkers	
  

  Add bounds info to objects 
▸  Pointers remain the same 
▸  Look up bounds information based on pointer’s 

value 
▸  Check pointer arithmetic: 

●  If result of arithmetic is larger than base object + size -> 
overflow detected 

●  Pointer use also checked to make sure object points to valid 
location 

  Other lighter-weight approaches 
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Bounds	
  checkers	
  

  Safe C: Austin et al. 
▸  Safe pointer: value (V), pointer base (B), size (S), 

class (C), capability (CP) 
▸  V, B, S used for spatial checks 
▸  C and CP used for temporal checks 

●  Prevents dangling pointers 
●  Class: heap, local or global, where is the memory 

allocated 
●  Capability: forever, never 

▸  Checks at pointer dereference 
●  First temp check: is the pointer still valid? 
●  Bounds check: is the pointer within bounds?  
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  checkers	
  

  Jones and Kelly 
▸  Austin not compatible with existing code 
▸  Maps object size onto descriptor of object (base, 

size) 
▸  Pointer dereference/arithmetic 

●  Check descriptor 
●  If out of bounds: error 

▸  Object created in checked code 
●  Add descriptor 

▸  Pointers can be passed to existing code 
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Bounds	
  checkers	
  

  CRED: Ruwase and Lam 
▸  Extension of Jones and Kelly 
▸  Problems with pointer arithmetic 

●  1) pointer goes out-of-bounds, 2) is not dereferenced, 3) 
goes in-bounds again 

●  Out-of-bounds arithmetic causes error  
●  Many programs do this 

▸  Create OOB object when going out-of-bounds 
●  When OOB object dereferenced: error 
●  When pointer arithmetic goes in-bounds again, set to 

correct value 
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Bounds	
  checkers	
  

  PariCheck: Younan et al. 
  Bounds are stored as a unique number over a 

region of memory 
  Object inhabits one or more regions, each 

region has the same unique number 
  Check pointer arithmetic 
▸  Look up unique number of object that pointer is 

pointing to, compare to unique number of the 
result of the arithmetic, if different -> overflow 

▸  Faster than existing bounds checkers: ~50% 
overhead 
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Bounds	
  checkers	
  

  Visual Studio 11 adds simple range checks 
   char buf[max]; 
   int i; 
   buf[i]=‘\0’; 

  If an attacker controls i, they could write outside 
the bounds of buf, bypassing the cookie 

  Adds: if (i>=max) range_exception(); 
  Due to performance reasons, it is only done 

when a NULL is set on a char array (not on a 
pointer) 
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Lecture	
  overview	
  
  Memory management in C/C++ 
  Vulnerabilities 
  Countermeasures 
▸  Safe languages 
▸  Probabilistic countermeasures 
▸  Separation and replication 

countermeasures 
▸  Paging-based countermeasures 
▸  Bounds checkers 
▸  Verification countermeasures 

  Conclusion 
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Verifica-on	
  countermeasures	
  

  Ensure that the values in use are sane 
▸  A typical example of this is safe unlinking 

  Safe unlinking was introduced to various heap 
allocators to ensure that the doubly linked list is 
sane before being used 

  For example before unlinking, do the following 
checks: 
▸  P->fd->bk should be equal to P 
▸  P->bk->fd should also be equal to P 

  If both conditions hold, then proceed with 
unlinking 
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  Flow	
  Integrity	
  

  CFI: Abadi et al. 
  Prevents ROP 
  Creates control flow graph of program 
  Adds unique value to destination of control flow 

transfer instruction (jump, call, etc.) 
  Checks unique value before transferring control 
▸  Example: jump 

●  jmp eax 

▸  Becomes 
●  cmp [eax], 0xdeadbeef 
●  jmp [eax+4] 
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  Flow	
  Integrity	
  

  Assumes:  
▸  Memory is non-executable (relies on NX) 
▸  Code memory is non-writable 
▸  Ability to generate unique value within the code 

space 

  Correctness proof under these assumptions 
  Problems with dynamically loaded code, 

currently only works for static code 
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  CPM: Philippaerts et al. 
  Calculates mask of possible control transfer 

points 
  Applies mask before doing transfer 
  Severely limits the locations attackers can jump 

to 
▸  Example: jmp eax 
▸  Can normally jump to location 0x0000001F and 

0x000000F5 
▸  Apply mask before jump: and eax, 0x000000FF 
▸  Attacker can only jump to 0x00-0xFF 
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  binary	
  signing	
  

  Apple signs apps on iPhone, also checks at 
runtime 

  When code is loaded into memory, the signature 
for the loaded page is checked (SHA-1) 

  Checks occur based on pages 
  Creating a new page with RX and accessing it 

before the signature is checked will resulted in 
SIGBUS error 

  Using a special fcntl, signature can be loaded 
  ROP is required to exploit vulnerabilities 
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Lecture	
  overview	
  

  Memory management in C/C++ 
  Vulnerabilities 
▸  Buffer overflows 
▸  Format string vulnerabilities 
▸  Integer errors 

  Countermeasures 
  Conclusion 
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Countermeasures	
  in	
  modern	
  OSes	
  

  Various countermeasures have been 
deployed in modern operating systems 
▸  ASLR 
▸  StackGuard 
▸  Safe unlinking 
▸  Non-executable memory 

  These have made exploitations of these 
attacks significantly harder 

  However, attackers have found various ways 
of bypassing these countermeasures 
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Countermeasures	
  in	
  modern	
  OSes	
  

  Windows 8 
▸  Significantly improves on existing implementations of 

countermeasures 
●  Much higher entropy for ASLR (especially on 64-bit) 
●  Force ASLR 
●  Heap 

–  Allocation order randomization 
●  Prohibits mapping of the first 64k of memory to prevent 

exploits of kernel NULL pointer dereferences 
●  Injects guard pages at specific points in the heap to prevent 

overflowing from one area of heap memory into another 
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Conclusion	
  

  Many attacks, countermeasures, counter-
countermeasures, etc. exist 

  Search for good and fast countermeasures to 
protect C continues 

  More information: 
▸  Y. Younan, W. Joosen and F. Piessens. Runtime countermeasures for 

code injection attacks against C and C++ programs 
▸  Y. Younan. Efficient countermeasures for software vulnerabilities due to 

memory management errors  
▸  Ú. Erlingsson, Y. Younan, F. Piessens, Low-level software security by 

example 
▸  Ken Johnson, Matt Miller: Exploit mitigation improvements in Windows 8 


