
C-­‐based	
 applica-on	

exploits	
 and	

countermeasures	

Yves Younan
Senior Research Engineer
Sourcefire Vulnerability Research Team (VRT)
yyounan@sourcefire.com

2

Introduc-on	

  C-based programs: some vulnerabilities exist
which could allow code injection attacks

  Code injection attacks allow an attacker to
execute foreign code with the privileges of the
vulnerable program

  Major problem for programs written in C/C++/
Objective C

  Focus will be on:
▸  Illustration of code injection attacks
▸  Countermeasures for these attacks

3

Lecture	
 overview	

  Memory management in C-based languages
  Vulnerabilities
  Countermeasures
  Conclusion

4

Memory	
 management	
 in	
 C-­‐based	

lanaguages	

  Memory is allocated in multiple ways in C-based
languages:
▸  Automatic (local variables in a function)
▸  Static (global variables)
▸  Dynamic (malloc, new or alloc)

  Programmer is responsible for
▸  Correct allocation and deallocation in the case of

dynamic memory
▸  Appropriate use of the allocated memory

●  Bounds checks, type checks

5

Memory	
 management	
 in	
 C-­‐based	

languages	

  Memory management is very error prone
  Typical bugs:
▸  Writing past the bounds of the allocated memory
▸  Dangling pointers: pointers to deallocated memory
▸  Double frees: deallocating memory twice
▸  Memory leaks: never deallocating memory

  For efficiency reasons, C-like compilers don’t
detect these bugs at run-time:
▸  C standard states behavior of such programs is

undefined

6

Process	
 memory	
 layout	

Arguments/Environment

Stack

Unused and
Shared Memory

Heap

Static & Global Data

Program code

7

Lecture	
 overview	

  Memory management in C-based languages
  Vulnerabilities
▸  Code injection attacks
▸  Buffer overflows
▸  Format string vulnerabilities
▸  Integer errors

  Countermeasures
  Conclusion

8

Code	
 injec-on	
 a>acks	

  To exploit a vulnerability and execute a code
injection attack, an attacker must:
▸  Find a bug that can allow an attacker to overwrite

interesting memory locations
▸  Find such an interesting memory location
▸  Copy target code in binary form into the memory of a

program
●  Can be done easily, by giving it as input to the program

▸  Use the vulnerability to modify the location so that
the program will execute the injected code

9

Interes-ng	
 memory	
 loca-ons	
 	

for	
 a>ackers	

  Stored code addresses: modified -> code can be
executed when the program loads them into the
IP
▸  Return address: address where the execution must

resume when a function ends
▸  Global Offset Table: addresses here are used to

execute dynamically loaded functions
▸  Virtual function table: addresses are used to know

which method to execute (dynamic binding in C++)
▸  Dtors functions: called when programs exit

10

Interes-ng	
 memory	
 loca-ons	

  Function pointers: modified -> when called, the
injected code is executed

  Data pointers: modified -> indirect pointer
overwrites
▸  First the pointer is made to point to an interesting

location, when it is dereferenced for writing the
location is overwritten

  Attackers can overwrite many locations to
perform an attack

11

Lecture	
 overview	

  Memory management in C/C++
  Vulnerabilities
▸  Code injection attacks
▸  Buffer overflows

●  Stack-based buffer overflows
●  Indirect Pointer Overwriting
●  Heap-based buffer overflows and double free
●  Overflows in other segments

▸  Format string vulnerabilities
▸  Integer errors

  Countermeasures
  Conclusion

12

Buffer	
 overflows:	
 impact	

  Code red worm: estimated loss world-wide: $

2.62 billion1
  Sasser worm: shut down X-ray machines at a

Swedish hospital and caused Delta airlines to
cancel several transatlantic flights2

  Zotob worm: crashed the DHS’ US-VISIT
workstations, causing long lines at major
international airports3

  Stuxnet: targeted Iran’s nuclear program and is
believed to have caused it delays/damage4

  All four worms used stack-based buffer
overflows

  1MS01-033, 2MS04-011,3 MS05-039, 4 MS08-67

13

Buffer	
 overflows:	
 numbers	

  NIST national vulnerability database:
▸  7809 buffer overflows reported over 25 years

(1988-2012): 14% of all vulnerabilities reported
●  Most reported vulnerability (XSS, 2nd place with 7006)

▸  23% (5528) of vulnerabilities with high severity
(CVSS>=7)
▸  35% (1391) of vulnerabilities with critical severity

(CVSS=10)
▸  Most important vulnerability in 2011, 2nd most

important in 2012 (behind access control issues)
▸  In the top 3 every year, except 2005
▸  More stats at my OWASP talk tonight

14

Buffer	
 overflows:	
 what?	

  Write beyond the bounds of an array
  Overwrite information stored behind the array
  Arrays can be accessed through an index or

through a pointer to the array
  Both can cause an overflow
  Java: not vulnerable because it has no pointer

arithmetic and does bounds checking on array
indexing

15

Buffer	
 overflows:	
 how?	

  How do buffer overflows occur?
▸  By using an unsafe copying function (e.g. strcpy)
▸  By looping over an array using an index which may

be too high
▸  Through integer errors

  How can they be prevented?
▸  Using copy functions which allow the programmer to

specify the maximum size to copy (e.g. strncpy)
▸  Checking index values
▸  Better checks on integers

16

Buffer	
 overflows:	
 example	

void function(char *input) {!
!char str[80];!
!strcpy(str, input);!

}!

int main(int argc, char **argv) {!
!function(argv[1]);!

}!

17

Shellcode	

  Small program in machine code representation
  Injected into the address space of the process
  int main() {!
  ! ! printf("You win\n");!
  ! ! exit(0);!
  ! }!
  ! static char shellcode[] =!
  ! ! ! "\x6a
\x09\x83\x04\x24\x01\x68\x77" !

  ! ! ! "\x69\x6e\x21\x68\x79\x6f
\x75\x20"!

  ! ! ! "\x31\xdb
\xb3\x01\x89\xe1\x31\xd2"!

  ! ! ! "\xb2\x09\x31\xc0\xb0\x04\xcd
\x80"!

  ! ! ! "\x32\xdb\xb0\x01\xcd\x80"; !

18

Lecture	
 overview	

  Memory management in C/C++
  Vulnerabilities
▸  Code injection attacks
▸  Buffer overflows

●  Stack-based buffer overflows
●  Indirect Pointer Overwriting
●  Heap-based buffer overflows and double free
●  Overflows in other segments

▸  Format string vulnerabilities
▸  Integer errors

  Countermeasures
  Conclusion

19

Stack-­‐based	
 buffer	
 overflows	

  Stack is used at run time to manage the use of
functions:
▸  For every function call, a new record is created

●  Contains return address: where execution should resume
when the function is done

●  Arguments passed to the function
●  Local variables

  If an attacker can overflow a local variable he
can find interesting locations nearby

20

Stack-­‐based	
 buffer	
 overflows	

  Old unix login vulnerability
▸  int login() { !

!char user[8], hash[8], pw[8]; !
!printf("login:"); !
!gets(user); !

!lookup(user,hash);!

!printf("password:"); !
!gets(pw); !

!if (equal(hash, hashpw(pw))) return OK; !
!else return INVALID; !

 } !

21

Stack-­‐based	
 buffer	
 overflows	

login:
 char user[8], hash[8], pw[8];
 printf(“username:”);
 gets(user);
 lookup(user,hash);
 printf(“password:”);
 gets(pw);
 if (equal(hash,hashpw(pw)))
 return OK;
 else
 return INVALID;

IP
Other stack frames

Return address login
Saved frame pointer login

hash

pw

user

FP

SP

22

Stack-­‐based	
 buffer	
 overflows	

login:
 char user[8], hash[8], pw[8];
 printf(“username:”);
 gets(user);
 lookup(user,hash);
 printf(“password:”);
 gets(pw);
 if (equal(hash,hashpw(pw)))
 return OK;
 else
 return INVALID;

IP

Other stack frames

Return address login
Saved frame pointer login

hash

pw

user

FP

SP

23

Stack-­‐based	
 buffer	
 overflows	

login:
 char user[8], hash[8], pw[8];
 printf(“username:”);
 gets(user);
 lookup(user,hash);
 printf(“password:”);
 gets(pw);
 if (equal(hash,hashpw(pw)))
 return OK;
 else
 return INVALID;

IP

Other stack frames

Return address login
Saved frame pointer login

hash

pw

user

FP

SP

24

Stack-­‐based	
 buffer	
 overflows	

login:
 char user[8], hash[8], pw[8];
 printf(“username:”);
 gets(user);
 lookup(user,hash);
 printf(“password:”);
 gets(pw);
 if (equal(hash,hashpw(pw)))
 return OK;
 else
 return INVALID;

IP

Other stack frames

Return address login
Saved frame pointer login

hash

pw

user

FP

SP

25

Stack-­‐based	
 buffer	
 overflows	

login:
 char user[8], hash[8], pw[8];
 printf(“username:”);
 gets(user);
 lookup(user,hash);
 printf(“password:”);
 gets(pw);
 if (equal(hash,hashpw(pw)))
 return OK;
 else
 return INVALID;

IP

Other stack frames

Return address login
Saved frame pointer login

hash

pw

user

FP

SP

26

Stack-­‐based	
 buffer	
 overflows	

  Attacker can specify a password longer than
8 characters

  Will overwrite the hashed password
  Attacker enters:
▸  AAAAAAAABBBBBBBB
▸  Where BBBBBBBB = hashpw(AAAAAAAA)

  Login to any user account without knowing
the password

  Called a non-control data attack

27

Stack-­‐based	
 buffer	
 overflows	

login:
 char user[8], hash[8], pw[8];
 printf(“username:”);
 gets(user);
 lookup(user,hash);
 printf(“password:”);
 gets(pw);
 if (equal(hash,hashpw(pw)))
 return OK;
 else
 return INVALID;

IP

Other stack frames

Return address login
Saved frame pointer login

hash

pw

user

FP

SP

28

Stack-­‐based	
 buffer	
 overflows	

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

Arguments f1 SP

FP IP

29

Stack-­‐based	
 buffer	
 overflows	

Overwritten return address

Injected code

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

Arguments f1

Return address f1
Saved frame pointer f1

Buffer
SP

FP

IP

30

Stack-­‐based	
 buffer	
 overflows	

Overwritten return address

Injected code

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

Arguments f1

SP

FP
IP

31

Stack-­‐based	
 buffer	
 overflows	

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Injected code

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0
SP

IP

32

Stack-­‐based	
 buffer	
 overflows	

  Exercises
▸  From Gera’s insecure programming page

●  http://community.corest.com/~gera/
InsecureProgramming/"

▸  For the following programs:
●  Assume Linux on Intel 32-bit
●  Draw the stack layout right after gets() has executed
●  Give the input which will make the program print out “you

win!”

33

Stack-­‐based	
 buffer	
 overflows	

  int main() {!
!int cookie;!

!char buf[80];!

!printf("b: %x c: %x\n", &buf, &cookie);!

!gets(buf);!

!if (cookie == 0x41424344)!

! !printf("you win!\n");!

}!

34

Stack-­‐based	
 buffer	
 overflows	

Return address main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

...

Frame pointer
cookie

buf

35

Stack-­‐based	
 buffer	
 overflows	

Return address main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

...

Frame pointer
ABCD

buf

 perl -e 'print "A"x80; print "DCBA"' | ./s1

36

Stack-­‐based	
 buffer	
 overflows	

  int main() {!

!int cookie;!

!char buf[80];!

!printf("b: %x c: %x\n", &buf, &cookie);!

!gets(buf);!

}!

  buf is at location 0xbffffce4 in memory!

37

Stack-­‐based	
 buffer	
 overflows	

Return address main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

...

Frame pointer
cookie

buf

38

Stack-­‐based	
 buffer	
 overflows	

 #define RET 0xbffffce4!

 int main() {!
!char buf[93];!
!int ret;!
!memset(buf, '\x90', 92);!
!memcpy(buf, shellcode, strlen(shellcode));!
!*(long *)&buf[88] = RET;!
!buf[92] = 0;!
!printf(buf);!

 }!

39

Stack-­‐based	
 buffer	
 overflows	

0xbffffce4
main:

buf[80]

gets()
printf()

Stack

0xbffffce4

FP

IP

cookie

...

0x90909090
0x90909090

Injected code

40

Lecture	
 overview	

  Memory management in C/C++
  Vulnerabilities
▸  Code injection attacks
▸  Buffer overflows

●  Stack-based buffer overflows
●  Indirect Pointer Overwriting
●  Heap-based buffer overflows and double free
●  Overflows in other segments

▸  Format string vulnerabilities
▸  Integer errors

  Countermeasures
  Conclusion

41

Indirect	
 Pointer	
 Overwri-ng	

  Overwrite a target memory location by
overwriting a data pointer
▸  An attackers makes the data pointer point to the

target location
▸  When the pointer is dereferenced for writing, the

target location is overwritten
▸  If the attacker can specify the value of to write, he

can overwrite arbitrary memory locations with
arbitrary values

42

Indirect	
 Pointer	
 Overwri-ng	

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0
SP

FP
IP

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

data

43

Indirect	
 Pointer	
 Overwri-ng	

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Buffer

Pointer

data

44

Indirect	
 Pointer	
 Overwri-ng	

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP

IP

f1:
buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Overwritten pointer

data
Injected code

f1:
buffer[]

overflow()
...

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

45

Indirect	
 Pointer	
 Overwri-ng	

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP

IP

f1:
buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Modified return address
Saved frame pointer f1

Overwritten pointer

data
Injected code

f1:
buffer[]

overflow()
...

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

46

Indirect	
 Pointer	
 Overwri-ng	

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0
SP

FP

IP

f1:
buffer[]

overflow();

...

ptr = &data;

*ptr = value;

data
Injected code

f1:
buffer[]

overflow()
...

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

47

Indirect	
 Pointer	
 Overwri-ng	

static unsigned int a = 0;!

int main(int argc, char **argv) {!

 int *b = &a;!

 char buf[80];!

 printf("buf: %08x\n", &buf);!

 gets(buf);!

 *b = strtoul(argv[1], 0, 16);!

}!

 buf is at 0xbffff9e4!

48

Indirect	
 Pointer	
 Overwri-ng	

f1:
buffer[]

overflow()
...

Stack

SP

FP

IP

main:

buf[80]
gets();

...

b = &a;

*b = argv[1];
Return address

Saved frame pointer

buf

b

a

49

Indirect	
 Pointer	
 Overwri-ng	

#define RET 0xbffff9e4+88!

int main() {!

 char buf[84];!

 int ret;!

 memset(buf, '\x90', 84);!

 memcpy(buf, shellcode, strlen
(shellcode));!

 *(long *)&buffer[80] = RET;!

 printf(buffer);!

}!

./exploit | ./s3 bffff9e4!

50

Indirect	
 Pointer	
 Overwri-ng	

f1:

buffer[]
overflow()

...
Stack

SP

FP IP

main:

buf[80]
gets();

...

b = &a;

*b = argv[1];
Return address

Saved frame pointer

buf

b

51

Indirect	
 Pointer	
 Overwri-ng	

f1:

buffer[]
overflow()

...
Stack

SP

FP
IP

main:

buf[80]
gets();

...

b = &a;

*b = argv[1];
Return address

Saved frame pointer

buf

b

52

Lecture	
 overview	

  Memory management in C/C++
  Vulnerabilities
▸  Code injection attacks
▸  Buffer overflows

●  Stack-based buffer overflows
●  Indirect Pointer Overwriting
●  Heap-based buffer overflows and double free
●  Overflows in other segments

▸  Format string vulnerabilities
▸  Integer errors

  Countermeasures
  Conclusion

53

Heap-­‐based	
 buffer	
 overflows	

  Heap contains dynamically allocated memory
▸  Managed via malloc() and free() functions of the

memory allocation library
▸  A part of heap memory that has been processed by

malloc is called a chunk
▸  No return addresses: attackers must overwrite data

pointers or function pointers
▸  Most memory allocators save their memory

management information in-band
▸  Overflows can overwrite management information

54

Heap	
 management	
 in	
 dlmalloc	

  Used chunk

Size of prev. chunk
Size of chunk1

Chunk1

User data

55

Heap	
 management	
 in	
 dlmalloc	

  Free chunk: doubly linked list of free chunks

Size of prev. chunk
Size of chunk1

Chunk1

Old user data

Forward pointer
Backward pointer

56

Heap	
 management	
 in	
 dlmalloc	

  Removing a chunk from the doubly linked list of
free chunks:

  This is:

#define unlink(P, BK, FD) {!
BK = P->bk;!
FD = P->fd;!
FD->bk = BK;!
BK->fd = FD; }!

P->fd->bk = P->bk!
P->bk->fd = P->fd!

57

Heap	
 management	
 in	
 dlmalloc	

Size of prev. chunk
Size of chunk1

Chunk1

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

58

Heap	
 management	
 in	
 dlmalloc	

Size of prev. chunk
Size of chunk1

Chunk1

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

59

Heap	
 management	
 in	
 dlmalloc	

Size of prev. chunk
Size of chunk1

Chunk1

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

60

Heap	
 management	
 in	
 dlmalloc	

Size of prev. chunk
Size of chunk1

Chunk1

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

61

Heap-­‐based	
 buffer	
 overflows	

Size of prev. chunk
Size of chunk1

Chunk1

User data

Size of chunk1
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

62

Heap-­‐based	
 buffer	
 overflows	

Size of prev. chunk
Size of chunk1

Chunk1

Injected code

Size of chunk1
Size of chunk2

Chunk2

Old user data

fwd: pointer to target
bck: pointer to inj. code

Return address

call f1
...

63

Heap-­‐based	
 buffer	
 overflows	

Size of prev. chunk
Size of chunk1

Chunk1

Injected code

Size of chunk1
Size of chunk2

Chunk2

Old user data

fwd: pointer to target
bck: pointer to inj. code

Overwritten return address

 After unlink

call f1
...

64

Dangling	
 pointer	
 references	

  Pointers to memory that is no longer allocated
  Dereferencing is unchecked in C
  Generally leads to crashes
  Can be used for code injection attacks when

memory is deallocated twice (double free)
  Double frees can be used to change the

memory management information of a chunk

65

Double	
 free	

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

66

Double	
 free	

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

67

Double	
 free	

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

68

Double	
 free	

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

69

Double	
 free	

  Unlink: chunk stays linked because it points
to itself

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

70

Double	
 free	

  If unlinked to reallocate: attackers can now
write to the user data part

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

71

Double	
 free	

  It is still linked in the list too, so it can be
unlinked again

Size of prev. chunk
Size of chunk2

Chunk2

Injected code

Forward pointer
Backward pointer

Return address

call f1
...

72

Double	
 free	

  After second unlink

Size of prev. chunk
Size of chunk2

Chunk2

Injected code

Forward pointer
Backward pointer

Overwritten return address

call f1
...

73

Lecture	
 overview	

  Memory management in C-based languages
  Vulnerabilities
▸  Code injection attacks
▸  Buffer overflows

●  Stack-based buffer overflows
●  Indirect Pointer Overwriting
●  Heap-based buffer overflows and double free
●  Overflows in other segments

▸  Format string vulnerabilities
▸  Integer errors

  Countermeasures
  Conclusion

74

Overflows	
 in	
 the	
 data/bss	

segments	

  Data segment contains global or static compile-
time initialized data

  Bss contains global or static uninitialized data
  Overflows in these segments can overwrite:
▸  Function and data pointers stored in the same

segment
▸  Data in other segments

75

Overflows	
 in	
 the	
 data/bss	

segments	

  ctors: pointers to functions
to execute at program start

  dtors: pointers to functions
to execute at program
finish

  GOT: global offset table:
used for dynamic linking:
pointers to absolute
addresses

Data

Ctors

Dtors

GOT

BSS

Heap

76

Overflow	
 in	
 the	
 data	
 segment	

 char buf[256]={1};!

 int main(int argc,char **argv) {!
  !strcpy(buf,argv[1]);!
 }!

77

Overflow	
 in	
 the	
 data	
 segment	

Data

Ctors

0x00000000 Dtors

GOT

BSS

buf[256]

78

Overflow	
 in	
 the	
 data	
 sec-on	

  int main (int argc, char **argv) {!
 !char buffer[476];!

!char *execargv[3] = { "./abo7", buffer,
NULL };!
 !char *env[2] = { shellcode, NULL };!

!int ret;!
!ret = 0xBFFFFFFF - 4 - strlen (execargv[0])

- 1 !
!- strlen (shellcode);!
!memset(buffer, '\x90', 476);!
!*(long *)&buffer[472] = ret;!
!execve(execargv[0],execargv,env);!

 }!

79

Overflow	
 in	
 the	
 data	
 segment	

Data

Ctors

RET Dtors

GOT

BSS

buf[256]

80

Lecture	
 overview	

  Memory management in C/C++
  Vulnerabilities
▸  Code injection attacks
▸  Buffer overflows
▸  Format string vulnerabilities
▸  Integer errors

  Countermeasures
  Conclusion

81

Format	
 string	
 vulnerabili-es	

  Format strings are used to specify formatting
of output:
▸  printf(“%d is %s\n”, integer,
string); -> “5 is five”!

  Variable number of arguments
  Expects arguments on the stack
  Problem when attack controls the format

string:
▸  printf(input);!
▸  should be printf(“%s”, input);!

82

Format	
 string	
 vulnerabili-es	

  Can be used to read
arbitrary values
from the stack
▸  “%s %x %x”!
▸  Will read 1 string

and 2 integers from
the stack

Stack

Other stack frames

Arguments printf:
format string

Return address printf

SP

FP
Saved frame ptr printf

Return address f0
Saved frame pointer f0

Local variable f0
string

83

Format	
 string	
 vulnerabili-es	

  Can be used to read
arbitrary values
from the stack
▸  “%s %x %x”!
▸  Will read 1 string

and 2 integers from
the stack

Stack

Other stack frames

Arguments printf:
format string

Return address printf

SP

FP
Saved frame ptr printf

Return address f0
Saved frame pointer f0

Local variable f0
string

84

Format	
 string	
 vulnerabili-es	

  Format strings can also write data:
▸  %n will write the amount of (normally) printed

characters to a pointer to an integer
▸  “%200x%n” will write 200 to an integer

  Using %n, an attacker can overwrite arbitrary
memory locations:
▸  The pointer to the target location can be placed

some where on the stack
▸  Pop locations with “%x” until the location is reached
▸  Write to the location with “%n”

85

Lecture	
 overview	

  Memory management in C/C++
  Vulnerabilities
▸  Code injection attacks
▸  Buffer overflows
▸  Format string vulnerabilities
▸  Integer errors

●  Integer overflows
●  Integer signedness errors

  Countermeasures
  Conclusion

86

Integer	
 overflows	

  For an unsigned 32-bit integer, 2^32-1 is the

largest value it can contain
  Adding 1 to this, will wrap around to 0.
  Can cause buffer overflows

  malloc(0) - result is implementation defined: either
NULL is returned or malloc will allocate the
smallest possible chunk: in Linux: 8 bytes

int main(int argc, char **argv){!
unsigned int a;!
char *buf;!
a = atol(argv[1]);!
buf = (char*) malloc(a+1); !
}!

87

Lecture	
 overview	

  Memory management in C/C++
  Vulnerabilities
▸  Code injection attacks
▸  Buffer overflows
▸  Format string vulnerabilities
▸  Integer errors

●  Integer overflows
●  Integer signedness errors

  Countermeasures
  Conclusion

88

Integer	
 signedness	
 errors	

  Value interpreted as both signed and unsigned

  For a negative a:
▸  In the condition, a is smaller than 100
▸  Strncpy expects an unsigned integer: a is now a

large positive number

int main(int argc, char **argv) {
int a;
char buf[100];
a = atol(argv[1]);
if (a < 100)

strncpy(buf, argv[2], a); }

89

Lecture	
 overview	

  Memory management in C-based languages

Vulnerabilities
  Countermeasures
▸  Probabilistic countermeasures
▸  Separation and replication

countermeasures
▸  Paging-based countermeasures
▸  Bounds checkers
▸  Verification countermeasures

  Conclusion

90

Countermeasures	

  Looks at the source of a countermeasure or
mitigation

  Mostly academic sources, we will see how/if they
are applied in modern operating systems and
compilers

  We will discuss shortcomings with the general
approaches of these countermeasures (and
sometimes of specific OS implementations)

91

Lecture	
 overview	

  Memory management in C/C++
  Vulnerabilities
  Countermeasures
▸  Probabilistic countermeasures
▸  Separation and replication

countermeasures
▸  Paging-based countermeasures
▸  Bounds checkers
▸  Verification countermeasures

  Conclusion

92

Probabilis-c	
 countermeasures	

  Based on randomness
  Canary-based approach
▸  Place random number in memory
▸  Check random number before performing action
▸  If random number changed an overflow has

occurred

  Obfuscation of memory addresses
  Address Space Layout Randomization
  Instruction Set Randomization

93

Canary-­‐based	
 countermeasures	

  StackGuard (SG): Cowan et al.
▸  Places random number before the return address

when entering function
▸  Verifies that the random number is unchanged when

returning from the function
▸  If changed, an overflow has occurred, terminate

program

94

StackGuard	
 (SG)	

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Buffer

Pointer

data

Canary

Canary

95

StackGuard	
 (SG)	

Return address f1
Saved frame pointer f1

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP IP

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Injected code

Pointer

data

Canary

Canary

96

Canary-­‐based	
 countermeasures	

  Propolice (PP): Etoh & Yoda
▸  Same principle as StackGuard
▸  Protects against indirect pointer overwriting by

reorganizing the stack frame:
●  All arrays are stored before all other data on the stack (i.e.

right next to the random value)
●  Overflows will cause arrays to overwrite other arrays or the

random value

  Part of GCC >= 4.1
  ‘Stack Cookies in Visual Studio

97

Propolice	
 (PP)	

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Buffer

Pointer
data

Canary

Canary

98

Propolice	
 (PP)	

Return address f1
Saved frame pointer f1

Canary

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Buffer

Pointer
data

Canary

99

Stack	
 cookies	
 in	
 Visual	
 Studio	

  Invalid cookies would throw an exception
  Attackers could overwrite the exception handler

pointers on a thread’s stack
  SafeSEH
▸  Creates a table of exception handling pointers at link

time
▸  If a pointer is not in this table, exception is invalid
▸  Must relink executable for it to work

  SEHOP
▸  Verifies integrity of the structured exception handler

call chain

100

SEHOP	

  Exception handling chain is a structure with next
pointers and a pointer to a handler

  SEHOP adds a symbolic registration record at
the end of the chain at runtime

  Verifies chain before calling the exception, due
to ASLR, an attacker can’t set a valid pointer to
the symbolic record

Next Handler

Next Handler

Function

Function

Next Handler Function

Next Handler Shellcode

Invalid

101

Heap	
 protector	
 (HP)	

Size of prev. chunk

Size of chunk1

Chunk1

User data

Size of chunk1
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Checksum

Checksum

 Heap protector: Robertson
et al.

 Adds checksum to the chunk
information

 Checksum is XORed with a
global random value

 On allocation checksum is
added

 On free (or other operations)
checksum is calculated,
XORed, and compared

102

Contrapolice	
 (CP)	

Size of prev. chunk
Size of chunk1

Chunk1

User data

Size of chunk1
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Canary1

Canary1
Canary2

Canary2

 Contrapolice: Krennmair
 Stores a random value before

and after the chunk
 Before exiting from a string

copy operation, the random
value before is compared to the
random value after

 If they are not the same, an
overflow has occured

103

Problems	
 with	
 canaries	

  Random value can leak
  For SG: Indirect Pointer Overwriting
  For PP: overflow from one array to the other

(e.g. array of char overwrites array of pointer)
  For HP, SG, PP: 1 global random value
  CP: different random number per chunk
  CP: no protection against overflow in loops

104

Probabilis-c	
 countermeasures	

  Obfuscation of memory addresses
▸  Also based on random numbers
▸  Numbers used to ‘encrypt’ memory locations
▸  Usually XOR

●  a XOR b = c
●  c XOR b = a

105

Obfusca-on	
 of	
 memory	
 addresses	

  PointGuard: Cowan et al.
▸  Protects all pointers by encrypting them (XOR) with

a random value
▸  Decryption key is stored in a register
▸  Pointer is decrypted when loaded into a register
▸  Pointer is encrypted when loaded into memory
▸  Forces the compiler to do all memory access via

registers
▸  Can be bypassed if the key or a pointer leaks
▸  Randomness can be lowered by using a partial

overwrite

106

Par-al	
 overwrite	

XOR:
0x41424344 XOR 0x20304050 = 0x61720314
 However, XOR ‘encrypts’ bitwise

0x44 XOR 0x50 = 0x14
If injected code relatively close:

1 byte: 256 possibilities
2 bytes: 65536 possibilities

107

Par-al	
 overwrite	

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Other Local variables f0

SP

FP

IP
f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Buffer

 Encrypted pointer

Data

108

Par-al	
 overwrite	

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Other Local variables f0

SP

FP IP

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Injected code

Data

 Encrypted pointer

109

Par-al	
 overwrite	

Modified return address

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Other Local variables f0

SP

FP IP

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Saved frame pointer f1

Injected code

Data

 Encrypted pointer

110

Probabilis-c	
 countermeasures	

  Address space layout randomization: PaX team
▸  Compiler must generate PIC
▸  Randomizes the base addresses of the stack, heap,

code and shared memory segments
▸  Makes it harder for an attacker to know where in

memory his code is located
▸  Can be bypassed if attackers can print out memory

addresses: possible to derive base address

  Implemented in Windows Vista / Linux >= 2.6.12
  Windows 8 allows “Force ASLR”, randomize

DLLs that aren’t compiled with ASLR support

111

Heap-­‐spraying	

  Technique to bypass ASLR
  If an attacker can control memory allocation in

the program (e.g. in the browser via javascript)
  Allocate a significant amount of memory
▸  For example: 1GB or 2GB
▸  Fill memory with a bunch of nops, place shell code at

the end
▸  Reduces amount of randomization offered by ASLR
▸  Jumping anywhere in the nops will cause the

shellcode to be executed eventually

112

Probabilis-c	
 countermeasures	

  Randomized instruction sets: Barrantes et al./Kc
et al.
▸  Encrypts instructions while they are in memory
▸  Decrypts them when needed for execution
▸  If attackers don’t know the key their code will be

decrypted wrongly, causing invalid code execution
▸  If attackers can guess the key, the protection can be

bypassed
▸  High performance overhead in prototypes: should be

implemented in hardware

113

Virtual	
 Table	
 Guard	

  Adds a random value to the top of the vtable
▸  Checks if the random value is unchanged before

using the vtable
▸  Enabled by adding an annotation to a C++ class

●  IE10 does this for a number of key classes

114

Probabilis-c	
 countermeasures	

  Rely on keeping memory secret
  Programs that have buffer overflows could also

have information leakage
  Example:
▸  char buffer[100];
▸  strncpy(buffer, input, 100);
▸  Printf(“%s”, buffer);

  Strncpy does not NULL terminate (unlike strcpy),
printf keeps reading until a NULL is found

115

Lecture	
 overview	

  Memory management in C/C++
  Vulnerabilities
  Countermeasures
▸  Probabilistic countermeasures
▸  Separation and replication

countermeasures
▸  Paging-based countermeasures
▸  Bounds checkers
▸  Verification countermeasures

  Conclusion

116

Separa-on	
 and	
 replica-on	
 of	

informa-on	

  Replicate valuable control-flow information
▸  Copy control-flow information to other memory
▸  Copy back or compare before using

  Separate control-flow information from other
data
▸  Write control-flow information to other places in

memory
▸  Prevents overflows from overwriting control flow

information

  These approaches do not rely on randomness

117

Separa-on	
 of	
 informa-on	

  Dnmalloc: Younan et al.
▸  Does not rely on random numbers
▸  Protection is added by separating the chunk

information from the chunk
▸  Chunk information is stored in separate regions

protected by guard pages
▸  Chunk is linked to its information through a hash

table
▸  Fast: performance impact vs. dlmalloc: -10% to +5%
▸  Used as the default allocator for Samhein (open

source IDS)

118

Dnmalloc	

Control data Regular data

Management information

Low addresses

High addresses

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Management information
Management information
Management information

Chunkinfo region
Guard page

Ptr to chunkinfo
Ptr to chunkinfo
Ptr to chunkinfo
Ptr to chunkinfo

Guard page
Hashtable

Ptr to chunkinfo

Management information

119

Separa-on	
 of	
 informa-on	

  Multistack: Younan et al.
▸  Does not rely on random numbers
▸  Separates the stack into multiple stacks, 2 criteria:

●  Risk of data being an attack target (target value)
●  Risk of data being used as an attack vector (source value)

–  Return addres: target: High; source: Low
–  Arrays of characters: target: Low; source: High

▸  Default: 5 stacks, separated by guard pages
●  Stacks can be reduced by using selective bounds checking:

to reduce source risk: ideally 2 stacks
▸  Fast: max. performance overhead: 2-3% (usually 0)

120

Mul-stack	

  Stacks are at a fixed location from each other
  If source risk can be reduced: maybe only 2

stacks
▸  Map stack 1,2 onto stack one
▸  Map stack 3,4,5 onto stack two

Array of
characters

Guard page

Structures
(with char.

array)

Array of
structures
(with char

array)

Guard page

Structs (no
char array)

Array of struct
(no char
array)
Arrays
Alloca()
Floats

Guard page

Array of
pointers

Structures (no
arrays)

Integers
Guard page

Pointers

Saved
registers

Guard page

121

Lecture	
 overview	

  Memory management in C/C++
  Vulnerabilities
  Countermeasures
▸  Probabilistic countermeasures
▸  Separation and replication

countermeasures
▸  Paging-based countermeasures
▸  Bounds checkers
▸  Verification countermeasures

  Conclusion

122

Paging-­‐based	
 countermeasure 	
 	
 	

  Non-executable memory (called NX or XN)
▸  Pages of memory can be marked executable,

writeable and readable
▸  Older Intel processors would not support the

executable bit which meant that readable meant
executable

▸  Eventually the bit was implemented, allowing the OS
to mark data pages (such as the stack and heap
writable but not executable)

▸  OpenBSD takes it further by implementing W^X
(writable XOR executable)

▸  Programs doing JIT have memory that is both
executable and writable

123

Stack-­‐based	
 buffer	
 overflowed	
 on	
 NX	

Overwritten return address

Injected code

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

Arguments f1

SP

FP
IP

124

Stack-­‐based	
 buffer	
 overflow	
 on	
 NX	

Injected code

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0
SP

IP

crash: memory
not executable

125

Bypassing	
 non-­‐executable	
 memory	

  Early exploits would return to existing functions

(called return-to-libc) to bypass these
countermeasures
▸  Places the arguments on the stack and then places

the address of the function as the return addres
●  This simulates a function call

▸  For example calling system(“/bin/bash”) would place
the address of the executable code for system as
return address and would place a pointer to the
string /bin/bash on the stack

126

Paging-­‐based	
 countermeasures	

Overwritten return address

Injected code

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

Arguments f1

Return address f1
Saved frame pointer f1

Buffer
SP

FP

IP

127

Paging-­‐based	
 countermeasures	

Overwritten return address

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

string “/bin/bash”

Pointer to /bin/bash

SP

FP

IP

system:
...

int 0x80

128

Return	
 oriented	
 programming	

  More generic return-to-libc
  Returns to existing assembly code, but doesn’t

require it to be the start of the function:
▸  Any code snippet that has the desired functionality

followed by a ret can be used
●  For example:

–  Code snippet that does pop eax, followed by ret
–  Next code snippet does mov ecx, eax followed by ret
–  Final code snippet does jmp ecx
–  Code gets executed at the address in ecx

  Shown to be Turing complete for complex
libraries like libc

129

Return	
 oriented	
 programming	

Overwritten return address

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

return after pop
To be popped in eax

SP

FP

IP

f2:
...

pop eax
ret

return after mov

f3:
...

mov ecx, eax
ret

f4:
...

jmp ecx
...

130

Return	
 oriented	
 programming	

  x86 has variable length instructions, ranging from
1 to 17 bytes.

  ROP doesn’t have to jump to the beginning of an
instruction

  The middle of an instruction could be interpreted
as an instruction that has the desired
functionality, followed by a ret (either as part of
that instruction or the following instruction)

  Also possible that jumping into a middle of an
instruction causes subsequent instructions to be
interpreted differently

131

Return	
 oriented	
 programming	

  x86 has variable length instructions, ranging from
1 to 17 bytes.

  ROP doesn’t have to jump to the beginning of an
instruction

  The middle of an instruction could be interpreted
as an instruction that has the desired
functionality, followed by a ret (either as part of
that instruction or the following instruction)

  Also possible that jumping into a middle of an
instruction causes subsequent instructions to be
interpreted differently

132

Return	
 oriented	
 programming	

  Example adapted from “Return-oriented Programming: Exploitation without Code Injection” by
Buchanan et al.

00 f7 add bh, dh

c7 07 00 00 00 0f mov edi, 0x0F000000

95 xchg eax, ebp

45 inc ebp

c3 ret

movl [ebp-44], 0x00000001

test edi, 0x00000007

setnzb [ebp-61]

c7 45 d4 01 00 00 00 machine code:

f7 c7 07 00 00 00 machine code:

0f 95 45 c3 machine code:

133

JIT	
 Spraying	

  Heap-spraying has the drawback that it will not
work with non-executable memory

  JIT spraying uses the Just In Time compiler in
browsers that transforms scripting code (JS,
Flash, AS) to native code
▸  By carefully crafting the script, the native code could

be interpreted differently when interpretation starts at
a different address

  Filling memory with this code can result in native
code that is marked executable that bypasses
ASLR

134

Lecture	
 overview	

  Memory management in C/C++
  Vulnerabilities
  Countermeasures
▸  Probabilistic countermeasures
▸  Separation and replication

countermeasures
▸  Paging-based countermeasures
▸  Bounds checkers
▸  Verification countermeasures

  Conclusion

135

Bounds	
 checkers	

  Ensure arrays and pointers do not access
memory out of bounds through runtime checks

  Slow:
▸  Bounds checking in C must check all pointer

operations, not just array index accesses (as
opposed to Java)

▸  Usually too slow for production deployment

  Some approaches have compatibility issues
  Two major approaches: add bounds info to

pointers, add bounds info to objects

136

Bounds	
 checkers	

  Add bounds info to pointers
▸  Pointer contains

●  Current value
●  Upper bound
●  Lower bound

▸  Two techniques
●  Change pointer representation: fat pointers

–  Fat pointers are incompatible with existing code (casting)
●  Store extra information somewhere else, look it up

▸  Problems with existing code: if (global) pointer is
changed, info is out of sync

137

Bounds	
 checkers	

  Add bounds info to objects
▸  Pointers remain the same
▸  Look up bounds information based on pointer’s

value
▸  Check pointer arithmetic:

●  If result of arithmetic is larger than base object + size ->
overflow detected

●  Pointer use also checked to make sure object points to valid
location

  Other lighter-weight approaches

138

Bounds	
 checkers	

  Safe C: Austin et al.
▸  Safe pointer: value (V), pointer base (B), size (S),

class (C), capability (CP)
▸  V, B, S used for spatial checks
▸  C and CP used for temporal checks

●  Prevents dangling pointers
●  Class: heap, local or global, where is the memory

allocated
●  Capability: forever, never

▸  Checks at pointer dereference
●  First temp check: is the pointer still valid?
●  Bounds check: is the pointer within bounds?

139

Bounds	
 checkers	

  Jones and Kelly
▸  Austin not compatible with existing code
▸  Maps object size onto descriptor of object (base,

size)
▸  Pointer dereference/arithmetic

●  Check descriptor
●  If out of bounds: error

▸  Object created in checked code
●  Add descriptor

▸  Pointers can be passed to existing code

140

Bounds	
 checkers	

  CRED: Ruwase and Lam
▸  Extension of Jones and Kelly
▸  Problems with pointer arithmetic

●  1) pointer goes out-of-bounds, 2) is not dereferenced, 3)
goes in-bounds again

●  Out-of-bounds arithmetic causes error
●  Many programs do this

▸  Create OOB object when going out-of-bounds
●  When OOB object dereferenced: error
●  When pointer arithmetic goes in-bounds again, set to

correct value

141

Bounds	
 checkers	

  PariCheck: Younan et al.
  Bounds are stored as a unique number over a

region of memory
  Object inhabits one or more regions, each

region has the same unique number
  Check pointer arithmetic
▸  Look up unique number of object that pointer is

pointing to, compare to unique number of the
result of the arithmetic, if different -> overflow

▸  Faster than existing bounds checkers: ~50%
overhead

142

Bounds	
 checkers	

  Visual Studio 11 adds simple range checks
 char buf[max];
 int i;
 buf[i]=‘\0’;

  If an attacker controls i, they could write outside
the bounds of buf, bypassing the cookie

  Adds: if (i>=max) range_exception();
  Due to performance reasons, it is only done

when a NULL is set on a char array (not on a
pointer)

143

Lecture	
 overview	

  Memory management in C/C++
  Vulnerabilities
  Countermeasures
▸  Safe languages
▸  Probabilistic countermeasures
▸  Separation and replication

countermeasures
▸  Paging-based countermeasures
▸  Bounds checkers
▸  Verification countermeasures

  Conclusion

144

Verifica-on	
 countermeasures	

  Ensure that the values in use are sane
▸  A typical example of this is safe unlinking

  Safe unlinking was introduced to various heap
allocators to ensure that the doubly linked list is
sane before being used

  For example before unlinking, do the following
checks:
▸  P->fd->bk should be equal to P
▸  P->bk->fd should also be equal to P

  If both conditions hold, then proceed with
unlinking

145

Control	
 Flow	
 Integrity	

  CFI: Abadi et al.
  Prevents ROP
  Creates control flow graph of program
  Adds unique value to destination of control flow

transfer instruction (jump, call, etc.)
  Checks unique value before transferring control
▸  Example: jump

●  jmp eax

▸  Becomes
●  cmp [eax], 0xdeadbeef
●  jmp [eax+4]

146

Control	
 Flow	
 Integrity	

  Assumes:
▸  Memory is non-executable (relies on NX)
▸  Code memory is non-writable
▸  Ability to generate unique value within the code

space

  Correctness proof under these assumptions
  Problems with dynamically loaded code,

currently only works for static code

147

Code	
 pointer	
 masking	

  CPM: Philippaerts et al.
  Calculates mask of possible control transfer

points
  Applies mask before doing transfer
  Severely limits the locations attackers can jump

to
▸  Example: jmp eax
▸  Can normally jump to location 0x0000001F and

0x000000F5
▸  Apply mask before jump: and eax, 0x000000FF
▸  Attacker can only jump to 0x00-0xFF

148

IOS	
 binary	
 signing	

  Apple signs apps on iPhone, also checks at
runtime

  When code is loaded into memory, the signature
for the loaded page is checked (SHA-1)

  Checks occur based on pages
  Creating a new page with RX and accessing it

before the signature is checked will resulted in
SIGBUS error

  Using a special fcntl, signature can be loaded
  ROP is required to exploit vulnerabilities

149

Lecture	
 overview	

  Memory management in C/C++
  Vulnerabilities
▸  Buffer overflows
▸  Format string vulnerabilities
▸  Integer errors

  Countermeasures
  Conclusion

150

Countermeasures	
 in	
 modern	
 OSes	

  Various countermeasures have been
deployed in modern operating systems
▸  ASLR
▸  StackGuard
▸  Safe unlinking
▸  Non-executable memory

  These have made exploitations of these
attacks significantly harder

  However, attackers have found various ways
of bypassing these countermeasures

151

Countermeasures	
 in	
 modern	
 OSes	

  Windows 8
▸  Significantly improves on existing implementations of

countermeasures
●  Much higher entropy for ASLR (especially on 64-bit)
●  Force ASLR
●  Heap

–  Allocation order randomization
●  Prohibits mapping of the first 64k of memory to prevent

exploits of kernel NULL pointer dereferences
●  Injects guard pages at specific points in the heap to prevent

overflowing from one area of heap memory into another

152

Conclusion	

  Many attacks, countermeasures, counter-
countermeasures, etc. exist

  Search for good and fast countermeasures to
protect C continues

  More information:
▸  Y. Younan, W. Joosen and F. Piessens. Runtime countermeasures for

code injection attacks against C and C++ programs
▸  Y. Younan. Efficient countermeasures for software vulnerabilities due to

memory management errors
▸  Ú. Erlingsson, Y. Younan, F. Piessens, Low-level software security by

example
▸  Ken Johnson, Matt Miller: Exploit mitigation improvements in Windows 8

